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ABSTRACT 

In Linear regression model, Ordinary Least Square estimate is considered the best method to estimate 

the parameter if all the assumptions are met. The violation of some of these assumptions may give 

misleading result due to the presence of outliers, hence, the need for the use of robust regression methods. 

The work investigated seven robust regression methods (Least Trimmed Squares estimates, Tukey 

Bisquare Estimator, Yohai MM Estimates, S- estimator, Least Absolute Value, Robust Weighted Least 

Squares Estimator and Least Winsorized Square for estimating regression parameters in the presence of 

outliers. Cases with two and five variables were compared. Simulation which covered data sets with 2%, 

and 10% outlying Contamination Rate and 20, 50, 100, 200, and 500 as sample sizes were performed 

using the R –Package. The Root Mean Square was used as the performance measure of accuracy for the 

estimators in predicting each of the parameters. The results obtained showed that  the number of  variables 

does not affect the performances of the robust methods considered. Robust Weighted Least Square and 

Least Winsorized Estimator performed best both in simulation and the real life data application. Hence, 

they are perfect substitute for Ordinary Least Square estimate  when data are contaminated with outliers.  
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 Introduction 

The term "regression" was coined by Francis Galton in the nineteenth century to describe a biological 

phenomenon  that the heights of descendants of tall ancestors tend to regress down towards a normal 

average  (Mogull, 2004).Regression analysis is a statistical process for estimating the relationships among 

variables. It helps one to understand how the typical value of the dependent variable changes when any 

of the independent variables is varied, while the other independent variables are held constant. Regression 

analysis estimates the average value of the dependent variable when the independent variables are fixed. 

It is very useful for prediction and forecasting. It is also used to explore the relationship between the 

independent and the dependent variables. Scott (2012) wrote that  regression analysis can be used to infer 

causal relationships between the independent and dependent variables in restricted circumstances. This 

can lead to illusions or false relationships, hence, caution should be taken.In practice, the performance of 

regression analysis methods depends on the form of data generating process. Most often  the true form 

of the data-generating process is generally unknown and such regression analysis often depends on 

making assumptions about this process to some extent. These assumptions are sometimes testable if a 

sufficient quantity of data is available. Regression models for prediction are often useful even when the 

assumptions are slightly violated, although, they may not perform optimally.  (Freedman, 2005). 

 

Recently, new methods have been developed for robust regression. These methods include regression 

methods which involve various types of missing data, nonparametric regression, Bayesian methods for 

regression, regression in which the predictor variables are measured with error, regression with more 

predictor variables than observations and causal inference with regression.In classical statistical theory, 

most of the statistical estimation methods are based on the model with certain assumptions, such as 

variables follow normal distribution, have constant variance and are mutually independent. Though in 

practice, these are not often met. Statistical models are just approximations to the actual events at a certain 

degree and when the actual data do not fulfill  the model assumptions, the estimators may no longer be 

the best. The optimal estimators could be through  these methods only if all the assumptions are satisfied. 

 

A robust estimation procedure dampens the effect of observations that would be highly influential if least 

square are used. It should produce essentially the same results as least squares when the underlying 

distribution is normal and there are no outliers. It is a form of weighted and reweighted least squares 
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regression (Holland & Welsch 1977). Robust methods seek to provide ways with optimal  performance 

when the basic assumptions for data sets are not fully fulfilled or violated.  

 

When data are contaminated with outliers or influential observations, the alternative to least squares 

regression is robust regression. Robust regression is a good substitute in any situation in which Least 

Squares Regression is used. When fitting a Least Squares Regression, one might find some outliers or 

high leverage data points. These data points are neither necessarily  data entry errors, nor from a different 

population than our data. Hence, there is no reason excluding them from the analysis.  Based on this, 

Robust regression becomes the remedy, since it is a compromise between excluding these points entirely 

from the analysis and including all the data points and treating them all equally in Ordinary Least Squares 

regression.  

Statement of the Problem 

In linear regression model, Ordinary Least Squares (OLS) method is considered the best method to 

estimate the regression parameter if the assumptions are met. However, when the data does not satisfy 

the assumptions, the results will be misleading. The violation of some of these assumptions is caused by 

the presence of outliers in the data thereby necessitating the use of robust regression methods. In this 

regards, It is necessary to review and compare the performance of these robust estimators under different 

sample sizes and percentages of contamination by outliers to determine which method is best under what 

conditions.    

Purpose of  the Study 

The  aim of this study is to determine the best method of estimating parameters  of a linear regression 

model in the presence of outlying values. 

The specific objectives are to; 

1. compare the performance of seven robust  methods using simulated and real life data. 

2.  ascertain from the comparison if the Contamination Rate of outlying values  affect  the performance of 

the methods. 

3. determine if number of  variables affect  the performance of the methods. 

4.  ascertain if sample size affects the performance of  the methods. 
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Materials and Methods 

This study considered seven robust methods of estimating the parameters of regression model namely ; 

Least Trimmed Squares (LTS)estimates, Tukey Bisquare Estimator, Yohai MM Estimates, S- estimator, 

Least Absolute Value (LAV) , Robust Weighted Least Squares Estimator (RWLS) and Least Winsorized 

Square. Cases with two and five independent variables were considered. The simulation experiments 

covered data sets with 2%, and 10% contamination rate. The sample sizes that were considered are 20, 

50 ,100,200 and 500. 

Methods Considered for the Analysis\ 

 Least Trimmed Squares (LTS) Estimate  

Least Trimmed Squares (LTS) method was developed by Rousseeuw (1984).It is given from 

minimizing 

𝛽̂𝐿𝑇𝑆 = 𝑎𝑟𝑔 𝑀𝑖𝑛                                                                                                                1 
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 with 𝑛 and 𝑝 being the given sample size and number of parameters 

involved in the model respectively.  

 The Least Winsorized Square (LWS) estimator 

LWS was developed by Yale and Forsythe in 1976. The estimator is given as:                                                                                                                                                                                           
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 Tukey’s Bisquare Estimator (TB) 

Tukey Bisquare Estimator was introduced by Tukey in 1977. Rather than minimize the sum of 

squared errors as the objective, the Tukey Bisquare estimate minimizes a function ρ of the errors. The 

objective function is,  
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where s is an estimate of scale formed from the  linear combination of the residuals. The 𝜌 function 

is defined as       
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                                                                                                                          (  Arya et al., 2007) 

 Yohai  MM Estimator  

MM estimation is a special type of M-estimation developed by Yohai (1987). It  is a combination of 

high breakdown value estimation and efficient estimation. M M estimates is the solution to the equation; 
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S-estimator  

S estimation is a high breakdown value method introduced by Rousseeuw and Yohai (1984). The 

objective function is given by the solution to 6. 

niallfork
s

YY

n

ii
n

i

,...,1,
1

1























 


                      6 

where K is a constant usually 0.1995 

 Least Absolute Value (LAV) 

This estimator minimizes the sum of absolute values of errors instead of minimizing the sum of 

squares of error as in Ordinary Least Squares. The estimates is given by; 
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ROBUST WEIGHTED LEAST SQUARES ESTIMATOR (RWLSE) 

RWLSE was introduced by Yohai and Gervini (2002). It is estimate using  

Method of Comparison 

In this work, the Root Mean Square Error (RMSE) was used for the comparison of the results and it 

is given as 
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Where the lower values of  RMSE indicate a better fit. 

Also, Coefficient of Determination (R2) was used to determine if the variability in B that is explained by 

the regression model. 
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Where B̂ i are the estimated parameters, iB  are the true values of the parameter and B  is the mean 

of the true values of the parameter. The value of R2   ranges between 0 and 1.That is, 10 2  R . To assess 

the effects of the Contamination Rate (CR), CR was varied as 2%, and 10%. Let 𝛼 be the probability of 

a contaminated observation (𝜏𝑖) occurring, then the number of contaminated points (Contamination Rate 

(CR)) is 𝑛 × 𝛼, where n is the sample size. This applied to the contaminants of the Y variable  as well. 

Data were generated with some percentage of outliers presence. To assess the effect of sample size on 

the accuracy of the estimators, the sample sizes of generated samples were varied as 20, 50, 100, 200 and 

500. The comparison was done using simulation to back up the result from the real life data set. A real 

life data application of the seven robust methods was done on data extracted from (Helmut, 1991), where 

there were one dependent and five independent variables. Mahalanobis distance was used to detect the 

outliers present in the data set. The Mahalanobis distance (MD) of an observation 𝑥 from a given set of 

observations with mean µ and covariance matrix S is given by )()( 1    XSXMD T

 

From 


2

p  table at 975.0  and p = 5 (since there are 5 independent variables) , 


2

p   value is 11.07. 

Mahalanobis distance greater than this were classified as outliers. All computations and simulations were 

done using the R statistical package. The R-codes were presented in the appendix. 

 

Data Analysis 

The results of the simulation and real life data application are presented for each data category  

Below are the tables presenting the summary some of the simulated experiments of two and five 

independent variables  at  2%, 5%, and 10%  contamination rate with varied sample sizes. The results are 

presented in tables containing the root mean square error (RMSE) and the coefficient of determination 
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for each of the methods considered. All computations and simulated experiments were done using the R 

package. 

 

Table 1: Results For Two Independent Variables At 2 % Contamination Rate at varying sample 

sizes 

Sample 

size 
n=20 n=20 n=50 n=50 n=100 n=100 n=200 n=200 n=500 n=500 

METHOD R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

LWS 0.8236 6.4077 0.8583 5.5201 0.77327 4.12355 0.85919 3.1926 0.78883 2.31763 

RWLSE 0.8583 8.2945 0.9858 9.6937 0.9067 4.31141 0.76081 3.2243 0.72131 2.23128 

LAV 0.9858 8.3067 0.9471 10.45 0.97327 7.53275 0.85919 5.1981 0.87943 3.33641 

S- 0.9744 15.0164 10.464 10.464 0.9849 7.54697 0.98503 5.2014 0.98558 3.33963 

TB 0.9841 15.0394 0.9856 10.45 0.98577 7.5316 0.98554 5.1981 0.92132 3.33643 

MM 0.7428 15.0394 0.9045 10.45 0.87343 7.53275 0.94022 5.1981 0.9859 3.33642 

LTS 0.8236 15.0394 0.8871 10.438 0.9871 7.53009 0.98737 5.1989 0.98771 3.33676 

           

 

From Table 1 for contamination rate (CR) 2%, when sample size was small,  (LWS) method produced 

the least root mean square error (RMSE), closely followed by the re-weighted least square estimator 

(RWSLE) while the method that produced the highest RMSE was the least trimmed square estimator. 

When n = 50, the least Winsorized square method still showed least error followed by the RWSLE while 

the S-estimator produced the highest error. When n = 100, The Least Winsorized Square Estimator 

showed the least error followed by the Robust weighted least square estimator, while the S-estimator 

produced the highest error. For n = 200 and 500, the Robust weighted least square, showed the least error, 

followed by The Least Winsorized Square Estimator, while the RMSE of the other methods were very 

close with the S-estimator showing the highest error.  

 

Table 2 : Results for two Independent Variables At 10% Contamination Rate and varying sample 

sizes 

Sample 

size 
n=20 n=20 n=50 n=50 n=100 n=100 n=200 n=200 n=500 n=500 

METHOD R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

RWLSE 0.71058 7.52775 0.8246 7.60618 0.79779 7.27198 0.74319 6.67856 0.71975 4.8603 

LWS 0.84857 7.547 0.7547 7.7697 0.8856 7.3243 0.81665 6.8821 0.60127 4.86763 
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LAV 0.8979 7.89901 0.9044 7.884 0.98411 7.46851 0.98678 10.9728 0.7692 5.57296 

TB 0.93342 7.67638 0.9764 24.8844 0.89904 17.2682 0.84349 11.9751 0.98564 7.57296 

MM 0.91007 7.64702 0.824 24.8843 0.89779 17.2682 0.87431 11.9752 0.71978 7.57296 

LTS 0.95855 10.1088 0.9856 25.1588 0.98589 17.2728 0.98548 11.9751 0.98724 7.57454 

S- 0.97123 8.87683 0.9271 25.1664 0.97388 17.301 0.98169 11.9784 0.98448 7.57338 

 

From Table 3.2, for CR = 10%, the Robust weighted least square produced the least root mean square 

error (RMSE), closely followed by the least Winzorized square methods while the method that produced 

the highest RMSE were  the least trimmed square  and S- estimators across the sample sizes considered 
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.  

 

 

Table 3: Results for five Independent Variables At 2% Contamination Rate and varying sample 

sizes 

Sample 

size 
n=20 n=20 n=50 n=50 n=100 n=100 n=200 n=200 n=500 n=500 

METHOD R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

RWLSE 0.71231 7.40146 0.7051 6.30208 0.76741 5.63835 0.803 4.52476 0.89891 3.12379 

LWS 0.73917 7.41438 0.77983 6.41334 0.8099 5.76959 0.7553 4.56407 0.88701 3.1475 

LAV 0.84417 8.8059 0.98846 6.88158 0.9896 6.16819 0.9898 6.28498 0.87629 3.4753 

TB 0.96985 18.8111 0.89838 13.0822 0.96353 9.16873 0.7296 6.28548 0.99009 3.9754 

MM 0.91217 18.806 0.9051 13.0822 0.86741 9.16873 0.803 6.28548 0.89895 3.9753 

LTS 0.98909 19.0679 0.9902 13.0995 0.99087 9.17508 0.991 6.29071 0.99135 3.9754 

S- 0.93686 19.037 0.98301 13.1163 0.98788 9.1884 0.9891 6.30877 0.98987 3.981 

           

 

From Table 3.3, at 2% contamination rate, when n= 20, RWLSE performed best with the lowest value of RMSE 

, it was closely followed by LWS. LTS performed least due to its high value of RMSE. The performance were 

the same when sample size was increased  to 50, 100,200 and 500. RWLSE and LWS performed best with lowest  

RMSE values. The method that produced the highest  RMSE here was S- estimator. Hence, the least performance. 

 

Table  4 : Results For Five Independent Variables At  10% Contamination Rate and varying 

sample sizes 

Sample 

size 
n=20 n=20 n=50 n=50 n=100 n=100 n=200 n=200 n=500 n=500 

METHOD R2 RMSE R2 RMSE R2 RMSE R2 RME R2 RMSE 

RWLSE 0.761 7.0272 0.4561 7.1472 0.5326 6.7488 0.67135 5.61 0.83437 4.10671 

LWS 0.845 7.0303 0.70043 7.1537 0.5262 6.7995 0.6068 5.7607 0.7838 4.10881 

LAV 0.834 7.5657 0.9899 7.1693 0.9788 7.2007 0.5622 9.182 0.76462 4.80268 

TB 0.803 19.073 0.8266 19.069 0.9898 13.2016 0.9899 9.1831 0.99004 5.80283 

MM 0.861 18.565 0.7561 19.0694 0.7326 13.2 0.67135 9.182 0.83437 5.80268 

LTS 0.934 23.574 0.99112 19.075 0.9907 13.2025 0.9909 9.185 0.99125 5.80295 

S- 0.796 22.036 0.9787 19.108 0.9865 13.204 0.98871 9.1833 0.9896 5.81044 
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From Table 4  at 10% contamination rate, RWLSE  performed best with least RMSE. This performance 

was closely followed by LWS. LTS performed least in this category with highest RMSE. When the 

sample size increased to 50 and 100, RWLSE still had the best  performance with lowest  RMSE and 

still followed closely by LWS. S- estimator did not perform well in this category. When the sample sizes 

were 200 and 500, RWLSE  and LWS performed best while LTS and S-estimator performed  least .The 

value of Coefficient of Determination ( R2)  which is above 0.68 in all categories considered indicates 

that more than 68% of the variability in the dependent variable has been accounted for by the models. 

 

Table 5 : Results from the real data application 

METHODS R-

SQUARED 

RMSE 

Robust Weighted Least Squares Estimator 0.7734697 7.74547 

Least Winsorized Square 0.7118966 7.74947 

Least Trimmed Square 0.7728831 7.78537 

Tukey's Bisquare 0.8854879 14.78539 

MM Estimator 0.8734697 14.78539 

Least Absolute Value 0.7775929 15.82905 

S Estimator 0.706352 17.47265 

 

From Table 3.5, Robust Weighted Least Squares performed best with lowest RMSE of 7.74547 and 

closely followed by Least Winsorized Square  (LWS) with RMSE of 7.74947. S- estimator did not do 

well here with the highest  RMSE of 17.47265. R2  values of which none is less than 76% (that is, 0.7646) 

shows that  at least 76% of total variation in the dependent variable which is death rate in this case can 

be explained by the independent variables which are the average annual precipitation, the average January 

temperature, the average July temperature, the size of the population older than 65 and the number of 

years of schooling for persons over 22 respectively. 

 

Discussion of Results 

The findings of the result revealed that for Contamination Rate (CR)of  2%,, with  small sample size, the 

least Winsorized square (LWS) method produced the least root mean square error (RMSE), closely 

followed by the Re-Weighted Least Square Estimator (RWSLE) while the method that produced the 

highest RMSE was The Least Trimmed Square Estimator.  The findings also revealed that at n = 50 and 
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100 the least Winsorized square method still showed least error followed by the RWSLE while the S-

estimator produced the highest error. In  the findings as the sample sizes increased to n = 200 and 500, 

the Robust weighted least square, showed the least error, followed by The Least Winsorized Square 

Estimator ,while the RMSE of the other methods were very close with the S-estimator showing the 

highest error.  

 

The finding revealed that at  contamination rate of 10%, the Robust weighted least square produced the 

least root mean square error (RMSE), closely followed by The Least Winzorized Square method, while 

the method that produced the highest RMSE was The Least Trimmed Square Estimator across the sample 

sizes considered. The Robust weighted least square and The Least Winsorized Square Estimator produced 

lesser R-squared than the rest of the methods across the sample sizes considered.  

 

When the number of independent variables is 5, The Robust Weighted Least Square produced the least 

root mean square error (RMSE), closely followed by The Least Winzorized Square method, while the 

method that produced the highest RMSE was the least trimmed square estimator across the sample sizes 

considered. From the application to the real life data (n = 50, 5 independent variables), it can be seen that 

the results was  backed up by the results from the simulation experiments. The Robust Weighted Least 

Square and The Least Winsorised Square method performed better than the rest of the methods, while 

the S-estimator did not  perform well like the rest of the methods. 

 

 Conclusion 

Based on the results from simulations and the real life data, it can be concluded that the best method for 

performing robust regression in presence of outliers, is The Robust Weighted Least Square method 

followed by The Least Winsorized Square method. Both methods produced minimal RMSE when 

compared to other methods considered for small and large samples and for 2 and 5 independent variables.  

 

Recommendation 

Based on the findings of the study, it was recommended 

1. The Least Winsorized Square Estimator should be considered when the sample size is small with 

2% contamination rate. 
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2. Robust weighted least square method should be preferred when considering robust regression in 

the presence of outliers when the sample size is from 200. 

3. Also the Robust weighted least square should be considered when the variable is fro 5 upwards 
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